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Reaction-Cattaneo systems with fluctuating relaxation time
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A reaction-Cattaneo equation with fluctuating relaxation time of the diffusive flux has been explored. It has
been shown that depending on the strength of fluctuations, the dynamical system exhibits new oscillatory
solutions as a result of Hopf and double Hopf bifurcations leading to spatiotemporal patterns. This analysis has

been applied to two model nonlinear systems.
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I. INTRODUCTION

The reaction-diffusion systems are ubiquitous in natural
sciences for understanding a wide class of far-from-
equilibrium phenomena in spatially extended nonlinear dy-
namical systems [1-4]. Examples include, traveling waves,
stationary, and nonstationary patterns, spirals, targets among
many others. A reaction-diffusion equation describes the spa-
tiotemporal evolution of dispersal of particles or species
which are undergoing reactions among themselves. While
the reactions follow the laws of chemical kinetics, the dis-
persal is governed by the diffusion equation. Although the
standard diffusion equation lies at the heart of Brownian dy-
namics or stochastic processes, at large, it, however, suffers
from a pathological pitfall. A close look at the fundamental
Gaussian solution of the diffusion equation with a point
source of the particles at distance r=0 at initial time =0
immediately asserts that, there exists always a finite nonzero
density of particles at very large distance even when the time
is very small. The implication is that the particles have infi-
nite speed. This unrealistic feature owes its origin to the lack
of inertia of the particles since the successive time intervals
associated with a diffusing particle are uncorrelated. Further-
more, this also makes it impossible to follow the motion of
the particles when the time is short. To bypass this difficulty
the model of correlated random walk was proposed by Furth
and others [5-7]. At the macroscopic continuum level this
corresponds to introducing nonzero relaxation time (7) of
flux by Cattaneo equation implying that the flux is delayed
by a time 7 with respect to the concentration gradient. The
Cattaneo’s modification of Fick’s law [8—10] can be com-
bined with reaction kinetics to obtain the reaction-telegraphic
or reaction-Cattaneo equation, which can successfully over-
come the above-mentioned difficulties. This equation has
been studied over the last several years in a wide variety of
contexts by several authors [10-13].

Before proceeding further we begin with a note that the
delay time 7 of the reaction-Cattaneo equation is closely re-
lated to correlated or persistent random walk. The persis-
tence in time implies that a particle continues in its initial
direction with a definite probability. Thus there is a close
kinship between the delay time 7 and the persistence of ran-
dom walk as a matter of chance at the microscopic level. We
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may thus anticipate that when the system size is not too large
the delay time is prone to stochastic fluctuations. This is
particularly important when the chemical reactions are fol-
lowed as elementary individual events as considered, for ex-
ample, in Gillespie algorithm [14]. One thus expects that the
delay time in the reaction-Catteneo equation is not a constant
parameter but may undergo stochastic fluctuations around a
positive mean for such systems or otherwise. A number of
theoretical and experimental investigations have been made
over the last several years to examine the effect of delay in
several contexts [15-19]. For example, delay in nonlinear
dynamical systems may change the stability boundaries, in-
duce multi-rhythmicity, waves, chaos and pattern formation
and other features of self-organization. The role of delay and
its feedback is quite extensive and pervasive in chemistry,
physics, and biology [20-23]. The use of delay differential
equations in various systems such as the Oregonator model,
Brown’s model of Enzyme kinetics, solid state nucleation,
mass transfer across membrane, etc., has been discussed by
Roussel and Epstein [24-26]. Apart from these, one may also
encounter situations where the constant delay does not de-
scribe realistic situations and the use of distributed delay
[27-29] is advocated. While the majority of these work con-
cern the kinetic terms of the reaction-diffusion system, the
present work focuses on the intrinsic delay time which char-
acterizes the time scale of relaxation of the diffusive flux due
to the inertia of the diffusing particles. Thus our purpose in
this paper is to introduce a reaction-Cattaneo equation with
fluctuating delay and explore the associated transport-driven
instabilities. We show that the resulting equation is charac-
terized by additional nonlinearity and higher order time-
derivatives. Linear stability analysis has been carried out to
show that depending on the strength of fluctuating delay the
homogeneous steady state of the dynamical system may un-
dergo single Hopf or double Hopf bifurcations, exhibiting
very rich complex dynamics leading to spatiotemporal pat-
terns. The conditions for the bifurcations are applied to two
nonlinear model systems.

II. REACTION-DIFFUSION EQUATION WITH FINITE
MEMORY

We consider the concentration of a reacting species or

field variable u(r,7), a function of space (r) and time (¢) in
terms of a reaction-diffusion system. The reaction-diffusion
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equation can be constructed phenomenologically from the
continuity equation with a source term f(u)

Au(r,t) _ aJ(r,1) + ), 2.1)
ot
where J(r,1) is the flux of u(r,t) and Fick’s law
J(r,t)=— DM (2.2)
ar
to obtain
au(r,t) a"zu(r )
ot 9 + f(u). (2.3)

Here D refers to the diffusion coefficient of the species. A
simple generalization of the reaction-diffusion equation is to
include the effect of finite memory transport with Cattaneo’s
modification of Fick’s law in the form [9,10]

du(r,t
D (r,1)

J(rt+7)=- p
R

(2.4)
Equation (2.4) implies that a concentration gradient at a time
t causes a flux at a later time (4 7), where 7 is the delay time
of the particles in adjusting one definite direction of motion.
Making an expansion of J in Eq. (2.4) up to first order in 7in
a Taylor series and differentiating the resulting equation with
respect to r one obtains

al(r,ty  PI(r1) __ Dazu(r, 1) (2.5)

4 2
ar ar ot or

On the other hand differentiation of Eq. (2.1) with respect to
t yields

+f (1) '9“;2”) . (2.6)

Pu(r,t) _ PI(r,1)
o drat
Elimination of J(r,7) from Eq. (2.5) and (2.6) with the help

of Eq. (2.1) results in the following reaction-telegraph equa-
tion, a hyperbolic equation of the form

Fulr) dulr) _ #utr)
Rl = ] =D R 4 fw),

(2.7)

As 7—0, the reaction-telegraph equation reduces to usual
parabolic differential equation, i.e., ordinary reaction-
diffusion equation. Thus a generic difference arises when 7is
small but ﬁnite In general, the smallness is ensured by the
condition 7<—— I f, o where —— 1s a measure of reaction time
scale [8]. It may, however, {)e pointed out that linear stability
analysis in certain cases may be carried out without this ap-
proximation. We specifically refer to [30-32]. Equation (2.7)
is the reaction-Cattaneo equation with constant delay 7 and is
the basis for further analysis.

III. REACTION-CATTANEO SYSTEM WITH
FLUCTUATING DELAY

Our purpose in this section is to explore the dynamics of
reaction-Cattaneo system with fluctuating delay time 7(z). To
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this end we now assume that the delay time (7) fluctuates
around a positive mean value 7, such that

() = 1+ (1),

where the noise term #(r) is assumed to be Gaussian with
Zero mean

(3.1)

(n(1))=0 (3.2)

and 6 correlated as

(p()n(t")) = edt—1"),

€ is the noise strength of the fluctuation. We assume further
that € is very small which implies that the width of Gaussian
distribution is very narrow. Ideally the fluctuating delay at
times may have negative values. But the narrowness of the
width around a relatively large positive mean ensures that the
probability of such events is overwhelmingly small so that
unphysical situations do not arise at the macroscopic limit.
Using Eq. (3.1) in Eq. (2.7) and making an ensemble average
we obtain

> u Fu
o) (5o
Pu
B ax?

n(t)f’(u)%> =n{ 55 )+ .

(3.3)

(3.4)

The above equation can be put into a more tractable form by
using Novikov’s theorem [33] for Gaussian noise processes.
According to this theorem the correlation function involving
noise in multiplicative form can be written down as follows:

() n(@)) = (fw)f' (u)), 3.5)
where f is function of u and f” is the first derivative with
respect to u. Applying Novikov’s theorem [33] on the terms
(n(1) az—> and {7(2)f" (u) m) it is easy to show

P ()
< ) > o
2
<n<r)f'(u)%> - e<f’(u>f’<u>(‘;—‘:) > (3.7)

Equation (3.4) can then be rewritten with the help of above
two relations as follows:

Ay ou) . du I u)
a2 g 0 ! (M)E T

AN
- e<f’(u>f'(u)<%) >=D aiﬁ

The above equation is complicated by the presence of several
terms characterized by the strength of fluctuation of delay, e
A further simplification can, however, be made at this stage
by making use of mean field approximation [34] to write the
average of the product as the product of averages so that the
higher order correlations are neglected. We thus obtain

(3.6)

and

70

(3.8)
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(3.9)

In the limit €e—0, Eq. (3.9) reduces to usual reaction-
Cattaneo Eq. (2.7).

IV. TRANSPORT-DRIVEN INSTABILITIES

We now return to Eq. (3.8) and explore the delay-induced
bifurcations of the reaction-diffusion system. The homoge-
neous steady states are the fixed points u, of the dynamical
system defined as

flug) =0. (4.1)

The spatiotemporal perturbation Su(x,t) on a homogeneous
steady state is given by

u(x,t) = ug + Su(x,t) (4.2)

Linearizing Eq. (3.8) around the steady state u, we obtain the
dynamics of spatiotemporal perturbation

& d J A
70?(614) + 5(514) - Tﬂf’(u0)5<5u) + 6%(514)

&
= D@(é‘u) + " (up){Su). (4.3)
Expressing spatiotemporal perturbation du(x,?) as du(x,?)
= dugeM cos kx and upon inserting it in Eq. (4.3) we obtain
the following dispersion relation:

e\t + 7oA + (1 = 7of " (ug))N + [DK?> = £/ (up) 1= 0. (4.4)

The dynamics of the spatiotemporal perturbation is deter-
mined by the nature of dispersion relation clearly reflecting
the nature of stability of the homogeneous steady state. We
begin by considering the system without delay in flux, so that
Eq. (4.4) yields

N ==[Dk* - f'(up)]. (4.5)

The system evolves from a linearly unstable steady state
[f'(ug) >0] and the reaction-diffusion system finally settles
down to a diffusion-driven stable state if Dk>> f'(u).

We now discuss the following two cases:

(i) For 75# 0 and €=0, i.e., the system has a fixed delay in
diffusion; Eq. (4.4) becomes

TN+ [1 = 7of" (o) IN + [DE> = £/ (up)]=0,  (4.6)
where the two different roots of \ are
1
Ne =5 A== 7f ()]
)
= \[1 - 7of (up) P = 47[DI* = f (up) ]} (4.7)

(a) If [1=1of" (ug)]>>47[ D>~ f' (uy)] and 1> 7yf" then
\-s are real, negative, i.e., the system settles down to a stable
state.
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(b) If [1=7of" (o) > 47 [Dk*>~f"(uy)] and 1< 7yf" then
A-s are always real, positive, i.e., the homogeneous steady
state remains unstable, in presence of perturbation.

(c) If [1=7of" (up) > <41 [Dk*~f'(uy)] then \-s are a pair
of complex conjugates. The system oscillates in time and
depending upon the sign of —[1—7f"(ug)], the unstable or
stable state is reached. When 7,= f;’lo) (since the state is
linearly unstable with respect to homogeneous perturbation
ie., f'(ug)>0, 7, is positive) and €=0, then Eq. (4.4) be-
comes

N == £ (ug)[DE* = £ (up)]. (4.8)

Here the roots are purely imaginary and therefore the system
lies at the Hopf bifurcation boundary. Hence for this particu-
lar value of delay strength the system finally evolves to a
purely oscillatory state. This implies that the constant delay
gives rise to spatially inhomogeneous self-sustained tempo-
ral oscillations. As a result the space-time profile is expected
to exhibit a coherent structure. We will illustrate these struc-
tures in terms of two examples in the next section.

(ii) In all the above-mentioned cases the delay is kept
constant. However, when the delay fluctuates in time so that
€#0, we are led the following situation. Thus for 7,#0,
€#0 but Tozm Eq. (4.4) becomes

f’('fio)f)\4 +2\? +f’(”o)[Dk2 - f'(up)]1=0.

This is a biquadratic equation and can be written in the form

(4.9)

AN*+ BN+ C=0, (4.10)
where
A=ef"(up),
B=1,
C = f(ug)[DK* = £ (up)]. (4.11)

The two pairs of roots can be evaluated as

5 1

=7 2ef' (up)

[= 1= V{1 — 4elf (o) PLDK* = ' (o) 1}].

(4.12)

Now for 1>4€[f (ug) ’LDK>—f" ()], A% <0 and two pairs
of imaginary roots with opposite sign develops. This is the
condition for double Hopf bifurcation. The nature of disper-
sion relation suggests that the spatially inhomogeneous pro-
files oscillate in time because of the superposition of four
complex exponentials for each wave vector. This results in
the emergence of complex spatiotemporal patterns. These
patterns undergo changes along with the variation of noise
strength of delay as shown in the next section.

V. APPLICATIONS
A. Fisher equation

Let us consider first the case of Fisher equation. The
source term in this equation represents a birth death process
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with logistic population growth according to f(u)=ru(1-%)
where r is the linear reproduction rate and K is the carrying
capacity of the environment. The resulting equation with D
as diffusion coefficient, i.e.,

du ( u) Pu
—=rull-—|+D— (5.1)
K

ot ax?

describes an one-dimensional model for the spread of advan-
tageous gene in a population. The homogeneous steady
states, the fixed points uy of the dynamical system are u
=0, K of which uy=0 is a linearly unstable fixed point.

Applying our previous analysis to this system it follows
from Eq. (4.4)

ex* + T\ + (1 — 7pr)\ + (DK = r) = 0.
When 75=0 and e=0

(5.2)

\=r— DK, (5.3)

the one component reaction-diffusion system settles down to
a diffusion-driven stable state for Dk>>r.
When 7,#0 and €=0, i.e., the system possesses a fixed

delay time in flux, the characteristic equation takes the form
N>+ (1 = 7r)\ + (Dk* = 1) =0, (5.4)

where

Ne=5—[= (1= 7r) £ (1 = )’ = 47(DK” = r)].

1
27 0
(5.5)
The subsequent three cases are as follows:

() If (1-7yr)>>47)(Dk*>~r) and 1> 7yr then A are real
and negative and the system settles down to a stable steady
state.

(ii) If (1= 7yr)>>47,(Dk*~r) and 1 < 7yr then \. are real,
positive and the system becomes unstable with time.

(iii) If (1-7yr)><47y(Dk*-r) then \. are complex con-
jugates and the system has a pair of oscillatory solutions and
the stability depends on the sign of (1—7y). When 7, is
varied the system passes through a Hopf bifurcation point at
T9=1/r. At this point Eq. (4.4) becomes

N +r(DK*-r)=0 (5.6)

and N\ becomes purely imaginary implying oscillatory solu-
tions. These oscillatory solutions can be realized as spa-
tiotemporal patterns. This is shown in Fig. 1. With increasing
r the profile of the periodic temporal oscillation becomes
more rapid over a range of spatially inhomogeneous distri-
bution of concentration. It is thus apparent that when the
constant time delay 7, matches the reaction time 1/r the
Hopf bifurcation induces deterministic periodic oscillations
whose spatial properties are determined by the growth rate of
the logistic reaction term.

(iv) When 75#0, €#0 but 7'0=1; then Eq. (4.4) becomes
erN*+ N2+ r(DK* - 1) =0, (5.7)

where
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Time

FIG. 1. The spatiotemporal patterns in Fisher equation due to
Hopf bifurcation for constant delay 7y=1/r for several values of r;
(a) r=0.5, (b) r=1.0, and (c) r=5.0 and for D=0.5.

A= ﬁ{— 1 +\[1 -4e(DK* - 1]}

(5.8)

Under the condition 1>4er*(Dk>~r), \% <0 and two pairs
of imaginary roots with opposite sign develop. This special
condition leads to double Hopf bifurcation in Fisher equation
and the homogeneous state uy,=0 exhibits complex oscilla-
tions. These complex spatiotemporal oscillations are demon-
strated in Fig. 2 for several values of noise strength e for
fixed values of r and D. By varying the noise strength of
time delay the time period of oscillatory pattern can be
changed. Or, in other words, with a proper choice of the
constant part of the delay parameter 7, which matches the
reaction time 1/r, the noise strength imparts a significant
effect on the nature of coherence of spatiotemporal dynam-
ics.

B. Cubic autocatalytic reaction

A simple way to design a chemical oscillator is to look for
systems that obey rate equations with cubic nonlinearity. The
model proposed by Boissonade and De Kepper [35,36] has a
generic form of a bistable system as follows:

h=— (= pu+y), (5.9)

where the species u is produced autocatalytically (the uu
term). The simple analysis of the nullcline shows that it can
have one unstable and two stable branches for appropriate
values of the parameters u and 7y. A prototypical cubic ki-
netics which has been extensively used [37,38] over a couple
of decades in wave-front propagation problems in reaction-
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Time

FIG. 2. The spatiotemporal patterns in Fisher equation due to
double Hopf bifurcation for constant delay 7y=1/r and for several
values of noise strength (a) €=5.0X 1077, (b) €=5.0X 107>, and (c)
€=5.0% 1073 of fluctuating delay time for r=1.0 and D=0.5.

diffusion systems is the model of iodate-arseneous acid reac-
tion

10, + 3H;As0; + 51" — 61"+ 3H;As0,.  (5.10)

The reaction is autocatalytic in iodide ion and the experimen-
tal rate equation takes the form

% = (ky + kyu)u(lo— u)h* = f(u), (5.11)

where u denotes the concentration of iodide ion. /# and [ are
constant parameters which refer to the concentration of hy-
drogen ion and the initial concentration of iodate, respec-
tively. k; and k, are the kinetic constants. The above equation
has three steady states of the dynamics, viz.

_ ky
Mo—lo, - kz, 0.

(5.12)

The experimentally admissible parameters are given by, k;
=45%x10° M3 s, k,=1.0X 108 M1, D=2
X107 ecm? 57! [,=5.0X 107> M; h=7.1X 107> M.

We apply our analysis of bifurcation theory to this system.
Equation (4.4) takes the form

ex* + To\% + (1 = 1ok Ioh*)\ + (DK* — kIoh?) = 0.
(5.13)

For 7p=0 and €=0 the system approaches to a diffusion-

. kIgh* .
driven stable state for k> =7, i.e., for k,>0.132.
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FIG. 3. The spatiotemporal patterns in iodate-arseneous acid
reaction due to Hopf bifurcation for a constant delay 7y=1/k,Ioh>
and D=2X10"> c¢cm?s™! for several values of hydrogen ion con-
centration (a) h=1.0X10"2 M, (b) h=3.0X10"2 M, and (c) h
=6.0X 1072 M. The values of other parameters are mentioned in
the text.

Now let us consider the case for which 7,#0 and €=0,
i.e., the system with a fixed delay. Equation (4.16) is reduced
to

1o\ + (1 = 1ok IghH\ + (DI* =k Iph?) =0,  (5.14)
where
1 2
Ao = —[= (1 = 7ok, Iph”)
27'0

.I_

+ (1 = rok Ioh?)? = 47o(DK* = kyIph?)]. (5.15)

Here if T0=W then the eigenvalues are imaginary with
opposite sign. This corresponds to a Hopf bifurcation sce-
nario. However, with fluctuating delay around a steady mean
value of TO:W the characteristic equation becomes

ek Ih>\* + N2 + (DK? = kIh®)k Ih*> =0, (5.16)
1
A2 = W[— 1 =1 - 4e(kIh2)A(DK> - kIoh?)].

(5.17)

Now for the condition 1> 4e(k,I h?)*(Dk>~k,I,h?) two pairs
of imaginary roots develop. This corresponds to the condi-
tion of double Hopf bifurcation. As before both Hopf and
double Hopf bifurcations are manifested in the spatiotempo-
ral patterns shown in Figs. 3 and 4. With increase of 4, i.e.,
hydrogen ion concentration, the periodicity in time becomes
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(0] 1 2 3 4 5
Time

FIG. 4. The spatiotemporal patterns in iodate-arseneous acid
reaction due to double Hopf bifurcations for constant delay 7,
=1/k;Ioh> and for several values of noise strength (a) €=5.0
X 1077, (b) €=5.0X 107, and (c) €=5.0 X 1073 of fluctuating delay
time for /=7.0X 107 M and D=2X 10> c¢m? s~!. The values of
other parameters are mentioned in the text.

more and more prominent in the spatially inhomogeneous
oscillations for an appropriate value of the constant delay
(Fig. 3). The time period, in general, tends to be shortened
when the delay fluctuates in time as a result of double Hopf
bifurcation (Fig. 4). We close this section with a remark on
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the condition for controlling delay in the system. The fluc-
tuation of delay time around the mean positive value depends
on the concentration of [I0;7] and [H*]. Hence by manipu-
lating the concentration of the above-mentioned species the
value of the mean delay time for achieving the condition for
the double Hopf bifurcation can be controlled. A simple
arithmetic based on admissible concentrations of the iodate
and [H*] shows the mean delay time to be 8.81X 107 s
which is too high for experimental purpose. However, the
experimentally realizable delay time (8.8 s) can be obtained
for relatively higher range 7.1 X 102 M of concentration of
H*.

VI. CONCLUSION

In this paper we have introduced a reaction-Cattaneo
equation with fluctuating delay. At the microscopic level this
takes care of the persistence or correlation of the underlying
random walk when the system size is relatively small. On the
other hand its macroscopic description corresponds equiva-
lently to a relaxation time of the diffusive flux which fluctu-
ates around a mean. This fluctuation in delay modifies the
characteristics of the transport-driven instabilities of the dy-
namical system. It has been shown that depending on the
strength of fluctuations the system admits of single and
double Hopf bifurcations giving rise to emergence of new
oscillating solutions leading to spatiotemporal patterns. The
analysis has been applied to two well-known dynamical sys-
tems to illustrate these features in terms of realistic situa-
tions.
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